Announcements

1) Quiz Thursday on

$$
14.3-14.5
$$

Example 1: Suppose

$$
\begin{aligned}
& f(x, y)=x^{3}+\sqrt{y} \\
& x=x(s, t)=\ln (s+t) \\
& y=y(s, t)=s^{4} t^{8}
\end{aligned}
$$

We found:

$$
\begin{aligned}
& \frac{\partial g}{\partial s}=\frac{3(\ln (s+t))^{2}}{s+t}+2 s t^{4} \\
& \frac{\partial g}{\partial t}=\frac{3(\ln (s+t))^{2}}{s+t}+4 s^{2} t^{3}
\end{aligned}
$$

Butalso:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 x^{2}, \frac{\partial f}{\partial y}=\frac{1}{2 \sqrt{y}} \\
& \frac{\partial x}{\partial s}=\frac{1}{s+t}=\frac{\partial x}{\partial t} \\
& \frac{\partial y}{\partial s}=4 s^{3} t^{8}, \frac{\partial y}{\partial t}=8 s^{4} t^{7} \\
& \frac{\partial f}{\partial x}(s, t)=3(\ln (s+t))^{2} \\
& \frac{\partial f}{\partial y}(s, t)=\frac{1}{\partial \sqrt{s^{4} t^{8}}}=\frac{1}{2 s^{2} t^{4}}
\end{aligned}
$$

Claim: If

$$
\begin{aligned}
& g(s, t)=f(x(s, t), y(s, t)) \\
& \frac{\partial g}{\partial s}=\frac{\partial f}{\partial x}(s, t) \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y}(s, t) \frac{\partial y}{\partial s} \\
&=(3 \ln (s+t))^{2}\left(\frac{1}{s+t}\right) \\
&+\frac{1}{2 s^{2} t^{4}}\left(4 s^{3} t\right) \\
&= \frac{3(\ln (s+t))^{2}}{s+t}+2 s t^{4}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial g}{\partial t} & =\frac{\partial f}{\partial x}(s, t) \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y}(s, t) \frac{\partial y}{\partial t} \\
& =3\left(\ln (s+t)\left(\frac{1}{s+t}\right)+\right. \\
& \frac{1}{2 s^{2} t^{4}}\left(8 s^{4} t^{7}\right) \\
& =\frac{3(\ln (s+t))^{2}}{s+t}+4 s^{2} t^{3}
\end{aligned}
$$

Chain Rule (Adolescent version)

Given $z=f(x, y)$ and $x=x(s, t), y=y(s, t)$. Then

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

(understood that you should compose $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ with $\left.x(s, t), y(s, t)\right)$

Implicit Differentiation
Suppose F is a function of 3 variables, consider

$$
F(x, y, z)=C
$$

for some constant C. Then another version of the implicit function theorem says we can solve for z in terms of x and y provided F is "sufficiently nice" in a small solid sphere about (x, y, z).

In this case, $z=z(x, y)$, and so by the Chain rule, if $g(x, y)=F(x, y, z(x, y))$,

$$
\begin{gathered}
0=\frac{\partial g}{\partial x}=\frac{\partial F}{\partial x}\left(\frac{\partial x}{\partial x}\right)^{=1}+\frac{\partial F}{\partial y}\left(\frac{\partial y}{\partial x}\right)+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x} \\
0=\frac{\partial F}{\partial x}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial x}, \text { so } \\
\frac{\partial z}{\partial x}=\frac{\left(-\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)}
\end{gathered}
$$

Then similarly,

$$
\frac{\partial z}{\partial y}=\frac{\left(-\frac{\partial f}{\partial y}\right)}{\left(\frac{\partial f}{\partial z}\right)}
$$

Tangent Planes and
the Gradient
Section 14.4

In one dimension, the derivative is the slope of the tangent line. What do the partial derivatives represent?

Definition: (gradient)
Given a function $z=f(x, y)$ from some domain D in \mathbb{R}^{2}, the gradient of f at a point (a, b) in D is denoted by $\nabla f(a, b)$, and is equal to

$$
\nabla f(a, b)=\left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle
$$

Example 2: $f(x, y)=1-x^{2}-y^{2}$
Find $\nabla f(0,2)$

$$
\frac{\partial f}{\partial x}=-2 x, \frac{\partial f}{\partial y}=-2 y,
$$

so

$$
\frac{\partial f}{\partial x}(0,2)=0, \frac{\partial f}{\partial y}(0,2)=-4,
$$

and

$$
\nabla f(0,2)=\langle 0,-4\rangle
$$

The Gradient and Orthogonality

Given a function $z=f(x, y)$; Choosing a constant c,
set $c=f(x, y)$ (gives a
level curve of f). We
Say that a vector is
orthogonal to the level curve at a point (a, b) on the curve if the vector is orthogonal to the direction vector of the tangent line to the curve at (a, b)

Example 3: $f(x, y)=1-x^{2}-y^{2}$
Consider the level curve

$$
0=1-x^{2}-y^{2} \quad(c=0)
$$

Find the tangent vector to the curve at the point $(1 / 2, \sqrt{3} / 2)$, Show it is orthogonal to $\nabla f(1 / 2, \sqrt{3} / 2)$.

By the chain rule,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(-\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)} \\
& =-\frac{\partial x}{\partial y}=-\frac{x}{y}
\end{aligned}
$$

take direction vector
$\langle y,-x\rangle$. The gradient is
$\nabla f=\langle-\partial x,-\partial y\rangle$ Evaluate
both at $(1 / 2, \sqrt{3} / 2)$

Tangent vector: $\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle$
Gradient: $\langle-1,-\sqrt{3}\rangle$

$$
\begin{array}{r}
\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle \cdot\langle-1,-\sqrt{3}\rangle \\
=-\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=0
\end{array}
$$

In General

If $z=f(x, y)$ and c is a constant, then fur the curve $C=f(x, y)$,

$$
\frac{d y}{d x}=\frac{\left(-\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)} \text {, so }
$$

a tangent vector is given by

$$
\left\langle\frac{\partial f}{\partial y},-\frac{\partial f}{\partial x}\right\rangle
$$

Then

$$
\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \text {, and }
$$

so at any point (a, b) on the level curve,

$$
\begin{aligned}
& \nabla f(a, b)-\left\langle\frac{\partial f}{\partial y}(a, b),-\frac{\partial f}{\partial x}(a, b)\right\rangle \\
= & \left\langle\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right\rangle \\
& \cdot\left\langle\frac{\partial f}{\partial y}(a, b),-\frac{\partial f}{\partial x}(a, b)\right\rangle \\
= & O
\end{aligned}
$$

This shows $\nabla f(a, b)$ is orthogonal to the level curve at (a, b).

To get the equation of the tangent line:

$$
\nabla f(a, b) \cdot\langle x-a, y-b\rangle=0
$$

Example 4: (tangent planes)

$$
\begin{aligned}
& x+2 y+z^{2}=F(x, y, z) \\
& \text { e }(0,1,2)
\end{aligned}
$$

Choose $C=6$. Then

$$
6=x+2 y+z^{2} \text { is a }
$$

level surface of $F(x, y, z)$. In small areas of the graph, F looks 2-dimensional

Instead of a tangent line, which is one-dimensional, the level surface should have tangent planes.

This will be the plane generated by two tangent vectors, as follows: intersect the graph of $6=x+2 y+z^{2}$ with the plane $x=0$ to get a curve $G=2 y+z^{2}$.

Solving for y,

$$
\begin{array}{ll}
y=\frac{6-z^{2}}{2}, & \text { so } \\
\frac{d y}{d z}=-z \text {, at }(0,1,2)
\end{array}
$$

this is equal to -2 , so a tangent vector would be $\langle-2,1\rangle$. Note that by the chain rule,

$$
\frac{\partial y}{\partial z}=\frac{\left(-\frac{\partial F}{\partial z}\right)}{(\partial F / \partial y)}=\frac{-\partial z}{2}=-z 1
$$

So then

$$
\frac{\partial y}{\partial z}(0,1,2)=\frac{d y}{d z}(0,1,2)
$$

if we fix $x=0$.
Cheat for the other vector using this observation:

When $y=1$

$$
\begin{aligned}
& \frac{d x}{d z}=\frac{\left(-\frac{\partial F}{\partial z}\right)}{(\partial F / \partial x)}=\frac{-2 z}{1}=-2 z \\
& \text { so at }(0,1,2), \frac{d x}{d z}=-4
\end{aligned}
$$

We then have two tangent vectors:

$$
\begin{gathered}
\langle-2,1\rangle \text { and } \\
y z \\
\langle-4,1\rangle \\
x z
\end{gathered}
$$

Include these vectors into \mathbb{R}^{3} by putting a zero in the missing coordinate:

$$
\begin{gathered}
\left\langle\begin{array}{c}
-2,1\rangle \\
y z \\
\langle-4,1\rangle \\
x z
\end{array} \mapsto\langle-4,-2,1\rangle\right. \\
\langle\langle 0,1\rangle
\end{gathered}
$$

We have a plane generated by $V=\langle 0,-2,1\rangle$ and $\omega=\langle-4,0,1\rangle$. We want the parallel plane containing $(0,1,2)$. We could cross v and w to get a normal vector or observe

$$
\begin{aligned}
& F(x, y, z)=x+2 y+z^{2} \\
& \nabla F=\langle 1,2,2 z\rangle \\
& \nabla F(0,1,2)=\langle 1,2,4\rangle
\end{aligned}
$$

We see that

$$
\begin{aligned}
& \nabla F(0,1,2) \cdot\langle 0,-2,1\rangle \\
& =\langle 1,2,4\rangle \cdot\langle 0,-2,1\rangle=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \nabla F(0,1,2) \cdot\langle-4,0,1\rangle \\
& =\langle 1,2,4) \cdot\langle-4,0,1\rangle=0
\end{aligned}
$$

Equation for tangent plane

$$
\begin{aligned}
& \nabla F(0,1,2\rangle \cdot\langle x, y-1, z-2\rangle=0 \\
& =\langle(1,2,4\rangle \cdot\langle x, y-1, z-2\rangle=0
\end{aligned}
$$

The Tangent Plane

Given a function $w=F(x, y, z)$, consider the level surface

$$
c=F(x, y, z)
$$

for some constant C.
Then the tangent plane at a point $\left(x_{0}, y_{0}, z_{0}\right)$ on the surface is

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0
$$

Example 5: If

$$
f(x, y, z)=\sin \left(x y^{2} z\right)+x-y
$$

and $c=1$, find the tangent
plane to $1=\sin \left(x y^{2} z\right)+x-y$

$$
\text { at }(1,1, \pi / 2)
$$

$$
\begin{gathered}
\nabla f=\left\langle y^{2} z \cos \left(x y^{2} z\right)+1,\right. \\
\\
2 x y z \cos \left(x y^{2} z\right)-1, \\
\left.x y^{2} \cos \left(x y^{2} z\right)\right\rangle \\
\nabla f(1,1, \pi / 2)=\langle 1,-1,0\rangle
\end{gathered}
$$

Tangent plane:

$$
\langle 1,-1,0\rangle \cdot\left\langle x-1, y-1, z-\frac{\pi}{2}\right\rangle=0
$$

For Functions
For $z=f(x, y)$, consider the function $G(x, y, z)=f(x, y)-z$.
$Z=f(x, y)$ corresponds to $G(x, y, z)=0$,
so the tangent plane to the graph of f at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is

$$
\begin{gathered}
\left.\begin{array}{l}
\nabla G\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)
\end{array}\right) \cdot\left\langle x-x_{0}, y-y_{0}, z-f\left(x_{0}, y_{0}\right)\right) \\
=0
\end{gathered}
$$

Example 6: Let

$$
f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}
$$

Find the equation of the tangent plane to the graph of f at the point $(3,4)$

$$
\begin{aligned}
\nabla f & =\left\langle\frac{y \sqrt{x^{2}+y^{2}}-\frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}}, \frac{x \sqrt{x^{2}+y^{2}}-\frac{y^{2} x}{\sqrt{x^{2}+y^{2}}}}{x^{2}+y^{2}}\right\rangle \\
& =\frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}}\left\langle y^{3}, x^{3}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\nabla f(3,4) & =\frac{1}{25^{3 / 2}}\langle 64,27\rangle \\
& =\frac{1}{125}\langle 64,27\rangle
\end{aligned}
$$

Tangent plane:

$$
\begin{gathered}
\frac{1}{125}\langle 64,27,-1\rangle \cdot\langle x-3, y-4, z-f(3,4)\rangle=0 \\
f(3,4)=\frac{12}{5}, \text { so } \\
\frac{1}{125}\langle 64,27,-1\rangle \cdot\left\langle x-3, y-4, z-\frac{12}{5}\right\rangle=0
\end{gathered}
$$

